

Department of Electrical Engineering

Ph.D Admission Entrance Examination

SYLLABUS (Session-2025-26)

1. Electrical Circuits

Network elements: ideal voltage and current sources, dependent sources, R, L, C, elements; Network solution methods: KCL, KVL, Node and Mesh analysis; Network Theorems: Thevenin's, Norton's, Superposition and Maximum Power Transfer theorem; Transient response of dc and ac networks, sinusoidal steady-state analysis, resonance, two port networks, balanced three phase circuits, stardelta transformation, complex power and power factor in ac circuits

2. Electrical Machines

Single phase transformer : equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; Threephase transformers: connections, vector groups, parallel operation; Auto-transformer, Electromechanical energy conversion principles; DC machines: separately excited, series and shunt, motoring and generating mode of operation and characteristics, speed control of dc motors; Three-phase induction machines: principle of operation, types, performance, torque-speed characteristics, no-load and blocked-rotor tests, equivalent circuit, starting and speed control; Operating principle of single-phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance and characteristics, regulation and parallel operation of generators, starting of

synchronous motors; Types of losses and efficiency calculations of electric machines.

3. Power Systems

Basic concepts of electrical power generation, ac and dc transmission concepts, Models and performance of transmission lines and cables, Economic Load Dispatch (with and without considering transmission losses), Series and shunt compensation, Electric field distribution and insulators, Distribution systems, Per-unit quantities, Bus admittance matrix, Gauss- Seidel and Newton-Raphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical components, Symmetrical and unsymmetrical fault analysis, Principles of over-current, differential, directional and distance protection; Circuit breakers, System stability concepts, Equal area criterion.

4. Control Systems

Mathematical modeling and representation of systems, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady-state analysis of linear time invariant systems, Stability analysis using Routh-Hurwitz and Nyquist criteria, Bode plots, Root loci, Lag, Lead and Lead-Lag compensators; P, PI and PID controllers; State space model, Solution of state equations of LTI systems.

5. Power Electronics

Static V-I characteristics and firing/gating circuits for Thyristor, MOSFET, IGBT; DC to DC conversion: Buck, Boost and Buck-Boost Converters; Single and three-phase configuration of uncontrolled rectifiers; Single and three phase AC to DC semi and

full converters with R, RL and RLE loads, Freewheeling diode concept, Magnitude and Phase of line current harmonics for uncontrolled and controlled converters; Power factor and Distortion Factor of AC to DC converters; Single-phase and three-phase voltage and current source inverters, sinusoidal pulse width modulation, Single phase AC voltage controllers and cyclo converter with R and RL loads.