Course Contents/Syllabus M.Sc. (Agri.)- Agronomy

I. Course Title : Modern Concepts in Crop Production

II. Course Code : AG5CO01
III. Credit Hours : 3+0

IV. Aim of the course

To teach the basic concepts of soil management and crop production.

V. Theory

Unit I

Crop growth analysis in relation to environment; geo-ecological zones of India.

Unit II

Quantitative agro-biological principles and inverse yield nitrogen law; Mitscherlich yield equation, its interpretation and applicability; Baule unit.

Unit III

Effect of lodging in cereals; physiology of grain yield in cereals; optimization of plant population and planting geometry in relation to different resources, concept of ideal plant type and crop modeling for desired crop yield.

Unit IV

Scientific principles of crop production; crop response production functions; concept of soil plant relations; yield and environmental stress, use of growth hormones and regulators for better adaptation in stressed condition.

Unit V

Integrated farming systems, organic farming, and resource conservation technology including modern concept of tillage; dry farming; determining the nutrient needs for yield potentiality of crop plants, concept of balance nutrition and integrated nutrient management; precision agriculture. Modern crop production concepts: soil less cultivation, Aeroponic, Hydroponic, Robotic and terrace farming. use of GIS, GPS and remote sensing in modern agriculture, precision farming and protected agriculture.

VI. Teaching methods/activities

Classroom teaching with AV aids, group discussion, assignment and class discussion

VII. Learning outcome

Basic knowledge on soil management and crop production

- Balasubramaniyan P and Palaniappan SP. 2001. Principles and Practices of Agronomy. Agrobios.
- Fageria NK. 1992. Maximizing Crop Yields. Marcel Dekker.
- Havlin JL, Beaton JD, Tisdale SL and Nelson WL, 2006. Soil Fertility and Fertilizers, 7th

Ed. Prentice Hall.

- Paroda R.S. 2003. Sustaining our Food Security. Konark Publ.
- Reddy SR. 2000. Principles of Crop Production. Kalyani Publ.
- Sankaran S and Mudaliar TVS. 1997. Principles of Agronomy. The Bangalore Printing & Publ.
- Singh SS. 2006. Principles and Practices of Agronomy. Kalyani.
- Alvin PT and kozlowski TT (ed.). 1976. Ecophysiology of Tropical Crops. Academia Pul., New York.
- Gardner PP, Pearce GR and Mitchell RL. 1985. *Physiology of Crop Plants*. Scientific Pub. Jodhpur.
- Lal R. 1989. Conservation tillage for sustainable agriculture: Tropics versus Temperate Environments. Advances in Agronomy 42: 85-197.
- Wilsie CP. 1961. Crop Adaptation and Distribution. Euresia Pub., New Delhi.

I. Course Title : Principal and Practices of Soil Fertility and Nutrient

Management

II. Course Code : AG5CO02

III. Credit Hours : 2+1

IV. Aim of the course

To impart knowledge of fertilizers and manures as sources of plant nutrients and apprise about the integrated approach of plant nutrition and sustainability of soil fertility.

V. Theory

Unit I

Soil fertility and productivity - factors affecting; features of good soil management; problems of supply and availability of nutrients; relation between nutrient supply and crop growth; organic farming - basic concepts and definitions.

Unit II

Criteria of essentiality of nutrients; Essential plant nutrients – their functions, nutrient deficiency symptoms; transformation and dynamics of major plant nutrients.

Unit III

Preparation and use of farmyard manure, compost, green manures, vermicompost, biofertilizers and other organic concentrates their composition, availability and crop responses; recycling of organic wastes and residue management. Soil less cultivation.

Unit IV

Commercial fertilizers; composition, relative fertilizer value and cost; crop response to different nutrients, residual effects and fertilizer use efficiency; agronomic, chemical and physiological, fertilizer mixtures and grades; methods of increasing fertilizer use efficiency; nutrient interactions.

Unit V

Time and methods of manures and fertilizers application; foliar application and its concept; relative performance of organic and inorganic nutrients; economics of fertilizer use; integrated nutrient management; use of vermincompost and residue wastes in crops.

- Determination of soil pH and soil EC
- · Determination of soil organic C
- Determination of available N, P, K and S of soil
- Determination of total N, P, K and S of soil
- Determination of total N, P, K, S in plant
- · Computation of optimum and economic yield

VII. Teaching methods/activities

Classroom teaching with AV aids, group discussion, assignment and class discussion

VIII. Learning outcome

Basic knowledge on soil fertility and management

- Brady NC and Weil RR. 2002. The Nature and Properties of Soils. 13th Ed. Pearson Edu.
- Fageria NK, Baligar VC and Jones CA. 1991. Growth and Mineral Nutrition of Field Crops.

Marcel Dekker.

- Havlin JL, Beaton JD, Tisdale SL and Nelson WL. 2006. Soil Fertility and Fertilizers. 7th Ed. Prentice Hall.
- Prasad R and Power JF. 1997. Soil Fertility Management for Sustainable Agriculture. CRC Press
- Yawalkar KS, Agrawal JP and Bokde S. 2000. Manures and Fertilizers. Agri-Horti Publ.

I. Course Title : Principles and Practices of Weed Management

II. Course Code : AG5C003
III. Credit Hours : 2+1

IV. Aim of the course

To familiarize the students about the weeds, herbicides and methods of weed control.

V. Theory

Weed biology, and ecology and classification, crop-weed competition including allelopathy; principles and methods of weed control and classification management; weed indices, weed shift in different eco-systems

Unit II

Herbicides introduction and history of their development; classification based on chemical, physiological application and selectivity; mode and mechanism of action of herbicides.

Unit III

Herbicide structure - activity relationship; factors affecting the efficiency of herbicides; herbicide formulations, herbicide mixtures, sequential application of herbicides, rotation; weed control through use ofnano-herbicides and bio-herbicides, myco-herbicides bio-agents, and allelochemicals; movement of herbicides in soil and plant, Degradation of herbicides in soil and plants; herbicide resistance, residue, persistence and management; development of herbicide resistance in weeds and crops and their management, herbicide combinationand rotation.

Unit IV

Weed management in major crops and cropping systems; alien, invasive and parasitic weeds and their management; weed shifts in cropping systems; aquatic and perennial weed control; weed control in non-crop area.

Unit V

Integrated weed management; recent development in weed management - robotics, use of drones and aeroplanes, organic etc., cost: benefit analysis of weed management.

VI. Practical

- Identification of important weeds of different crops, Preparation of a weed herbarium, Weed survey in crops and cropping systems, Crop -weed competition studies, Weed indices calculation and interpretation with data, Preparation of spray solutions of herbicides for high and low-volume sprayers, Use of various types of spray pumps and nozzles and calculation of swath width, Economics of weed control, Herbicide resistance analysis in plant and soil,
- Bioassay of herbicide resistance residues,
- Calculation of herbicidal herbicide requirement

VII. Teaching methods/activities

Classroom teaching with AV aids, group discussion, field visit to identify weeds.

VIII. Learning outcome

Basic knowledge on weed identification and control for crop production

- Böger, Peter, Wakabayashi, Ko, Hirai, Kenji (Eds.). 2002. Herbicide Classes in Development. Mode of Action, Targets, Genetic Engineering, Chemistry. Springer.
- Chauhan B and Mahajan G. 2014. Recent Advances in Weed Management. Springer.
- Das TK. 2008. Weed Science: Basics and Applications, Jain Brothers (New Delhi).
- Fennimore, Steven A and Bell, Carl. 2014. Principles of Weed Control, 4th Ed, California Weed Sci. Soc.
- Gupta OP. 2007. Weed Management: Principles and Practices, 2nd Ed.
- Jugulan, Mithila (ed). 2017. Biology, Physiology and Molecular Biology of Weeds. CRC Press
- Monaco TJ, Weller SC and Ashton FM. 2014. Weed Science Principles and Practices, Wiley
- Powles SB and Shaner DL. 2001. Herbicide Resistance and World Grains, CRC Press.
- Walia US. 2006. Weed Management, Kalyani.
- Zimdahl RL. (ed). 2018. Integrated Weed Management for Sustainable Agriculture, B. D. Sci. Pub.

I. Course Title : Principles and Practices of Water Management

II. Course Code : AG5CO05 III. Credit Hours : 2+1

IV. Aim of the course

To teach the principles of water management and practices to enhance the water productivity

V. Theory

Unit I

Water and its role in plants; Irrigation: Definition and objectives, water resources and irrigation development in of India and concerned state, major irrigation projects, extent of area and crops irrigated in India and in different states.

Unit II

Field water cycle, water movement in soil and plants; transpiration; soil-water-plant relationships; water absorption by plants; plant response to water stress, crop plant adaptation to moisture stress condition. Water availability and its relationship with nutrient availability and loses.

Unit III

Soil, plant and meteorological factors determining water needs of crops, scheduling, depth and methods of irrigation; micro irrigation systems; deficit irrigation; fertigation; management of water in controlled environments and polyhouses. Irrigation efficiency and water use efficiency.

Unit IV

Water management of crop and cropping system, Quality of irrigation water and management of saline water for irrigation, water use efficiency, Crop water requirement- estimation of ET and effective rainfall; Water management of the major crops and cropping systems. Automated irrigation system.

Unit V

Excess of soil water and plant growth; water management in problem soils, drainage requirement of crops and methods of field drainage, their layout and spacing; rain water management and its utilization for crop production.

Unit VI

Quality of irrigation water and management of saline water for irrigation, water management in problem soils

Unit VII

Soil moisture conservation, water harvesting, rain water management and its utilization for crop production.

Unit VIII

Hydroponics,

Unit IX

Water management of crops under climate change scenario.

VI. Practical

- Determination of Field capacity by field method
- Determination of Permanent Wilting Point by sunflower pot culture technique
- Determination of Field capacity and Permanent Wilting Point by Pressure Plate

Apparatus

- Determination of Hygroscopic Coefficient
- Determination of maximum water holding capacity of soil
- Measurement of matric potential using gauge and mercury type tensiometer
- Determination of soil-moisture characteristics curves
- Determination of saturated hydraulic conductivity by constant and falling head method
- Determination of hydraulic conductivity of saturated soil below the water table by auger hole method
- Measurement of soil water diffusivity
- Estimation of unsaturated hydraulic conductivity
- Estimation of upward flux of water using tensiometer and from depth ground water table
- Determination of irrigation requirement of crops (calculations)
- Determination of effective rainfall (calculations)
- Determination of ET of crops by soil moisture depletion method16. Determination of water requirements of crops
- · Measurement of irrigation water by volume and velocity-area method
- Measurement of irrigation water by measuring devices and calculation of irrigation efficiency
- Determination of infiltration rate by double ring infiltrometer

VII. Teaching methods/activities

Classroom teaching with AV aids, group discussion, assignment and field visit

VIII. Learning outcome

Basic knowledge on water management for optimization of crop yield

- Majumdar DK. 2014. Irrigation Water Management: Principles and Practice. PHL Learning private publishers
- Mukund Joshi. 2013. A Text Book of Irrigation and Water Management Hardcover, Kalyani publishers
- Lenka D. 1999. Irrigation and Drainage. Kalyani.
- Michael AM. 1978. Irrigation: Theory and Practice. Vikas Publ.
- Paliwal KV. 1972. Irrigation with Saline Water. IARI Monograph, New Delhi.
- Panda SC. 2003. Principles and Practices of Water Management. Agrobios.
- Prihar SS and Sandhu BS. 1987. Irrigation of Food Crops Principles and Practices. ICAR.
- Reddy SR. 2000. Principles of Crop Production. Kalyani.
- Singh Pratap and Maliwal PL. 2005. *Technologies for Food Security and Sustainable Agriculture*. Agrotech Publ.

I. Course Title : Conservation Agriculture

II. Course Code : AG5CO04

III. Credit Hours : 1+1

IV. Aim of the course

To impart knowledge of conservation of agriculture for economic development.

V. Theory

Unit I

Conventional and conservation agriculture systems, sustainability concerns, conservation agriculture: Historical background and present concept, global experiences, present status in India.

Unit II

Nutrient management in CA, water management, weed management, energy use, insect-pest and disease management, farm machinery, crop residue management, cover crop management.

Unit III

Climate change mitigation and CA, C-sequestration, soil health management, soil microbes and CA. CA in agroforestry systems, rainfed / dryland regions

Unit V

Economic considerations in CA, adoption and constraints, CA: The future of agriculture

VI. Practicals

- Study of long-term experiments on CA,
- Evaluation of soil health parameters,
- Estimation of C-sequestration,
- Machinery calibration for sowing different crops, weed seedbank estimation under CA, energy requirements, economic analysis of CA.

VII. Teaching methods/activities

Classroom teaching with AV aids, group discussion, oral presentation by students.

VIII. Learning outcome

Experience on the knowledge of various types of conservation of agriculture.

- Arakeri HR and Roy D. 1984. Principles of Soil Conservation and Water Management. Oxford & IBH.
- Bisht JK, Meena VS, Mishra PK and Pattanayak A. 2016. Conservation Agriculture -An approach to combat climate change in Indian Himalaya. Publisher: Springer Nature. Doi: 10/1007/978-981-10-2558-7.
- Dhruvanarayana VV. 1993. Soil and Water Conservation Research in India. ICAR.
- FAO. 2004. Soil and Water Conservation in Semi-Arid Areas. Soils Bull., Paper 57.
- Gracia-Torres L, Benites J, Martinez-Vilela A and Holgado-Cabera A. 2003. Conservation Agriculture- Environment Farmers experiences, innovations Socio-economic policy.
- Muhammad F and Kamdambot HMS. 2014. Conservation Agriculture. Publisher: Springer Cham Heidelberg, New Yaork Dordrecht London. Doi: 10.1007/978-3-319-11620-4.
- Yellamanda Reddy T and Sankara Reddy GH. 1992. Principles of Agronomy. Kalyani.

I. Course Title : Dryland Farming and Watershed Management

II. Course Code. : AG5CO06 III. Credit Hours : 2+1

IV. Aim of the course

To teach the basic concepts and practices of dry land farming and soil moisture conservation.

V. Theory

Unit I

Definition, concept and characteristics of dry land farming; dry land versus rainfed farming; significance and dimensions of dry land farming in Indian agriculture.

Unit II

Soil and climatic parameters with special emphasis on rainfall characteristics; constraints limiting crop production in dry land areas; types of drought, characterization of environment for water availability; crop planning for erratic and aberrant weather conditions.

Unit III

Stress physiology and resistance to drought, adaptation of crop plants to drought, drought management strategies; preparation of appropriate crop plans for dry land areas; mid contingent plan for aberrant weather conditions.

Unit IV

Tillage, tilth, frequency and depth of cultivation, compaction in soil tillage; concept of conservation tillage; tillage in relation to weed control and moisture conservation; techniques and practices of soil moisture conservation (use of mulches, kinds, effectiveness and economics); antitranspirants; soil and crop management techniques, seeding and efficient fertilizer use.

Unit V

Concept of watershed resource management, problems, approach and components.

VI. Practical

- · Method of Seed Priming
- Determination of moisture content of germination of important dryland crops
- Determination of Relative Water Content and Saturation Deficit of Leaf
- Moisture stress effects and recovery behaviour of important crops
- · Estimation of Potential ET by Thornthwaite method
- Estimation of Reference ET ny Penman Monteith Method
- Classification of climate by Thornthwaite method (based on moisture index, humidity index and aridity index)
- Classification of climate by Koppen Method
- Estimation of water balance by Thornthwaite method
- · Estimation of water balance by FAO method
- · Assessment of drought
- Estimation of length of growing period
- Estimation of probability of rain and crop planning for different drought condition
- Spray of anti-transpirants and their effect on crops
- Water use efficiency
- Visit to dryland research stations and watershed projects

VII. Teaching methods/activities

Classroom teaching with AV aids, group discussion, assignment.

VIII. Learning outcome

Basic knowledge on dry land farming and soil moisture conservation.

- Reddy TY. 2018. Dryland Agriculture Principles and Practices, Kalyani publishers
- Das NR. 2007. Tillage and Crop Production. Scientific Publ.
- Dhopte AM. 2002. Agrotechnology for Dryland Farming. Scientific Publ.
- Dhruv Narayan VV. 2002. Soil and Water Conservation Research in India. ICAR.
- Gupta US. (Ed.). 1995. Production and Improvements of Crops for Drylands. Oxford & IBH.
- Katyal JC and Farrington J. 1995. Research for Rainfed Farming. CRIDA.
- Rao SC and Ryan J. 2007. Challenges and Strategies of Dryland Agriculture. Scientific Publ.
- Singh P and Maliwal PL. 2005. *Technologies for Food Security and Sustainable Agriculture*. Agrotech Publ. Company.
- Singh RP. 1988. Improved Agronomic Practices for Dryland Crops. CRIDA.
- Singh RP. 2005. Sustainable Development of Dryland Agriculture in India. Scientific Publ.
- Singh SD. 1998. Arid Land Irrigation and Ecological Management. Scientific Publ.
- Venkateshwarlu J. 2004. Rainfed Agriculture in India. Research and Development Scenario. ICAR.

I. Course Title : Principles and Practices of Organic Farming

II. Course Code : AG5CO07
III. Credit Hours : 2+1

IV. Aim of the course

To study the principles and practices of organic farming for sustainable crop production.

V. Theory

Unit I

Organic farming - concept and definition, its relevance to India and global agriculture and future prospects; principles of organic agriculture; organics and farming standards; organic farming and sustainable agriculture; selection and conversion of land, soil and water management - land use, conservation tillage; shelter zones, hedges, pasture management, agro-forestry.

Unit II

Organic farming and water use efficiency; soil fertility, nutrient recycling, organic residues, organic manures, composting, soil biota and decomposition of organic residues, earthworms and vermicompost, green manures, bio-fertilizers and biogas technology.

Unit III

Farming systems, selection of crops and crop rotations, multiple and relay cropping systems, intercropping in relation to maintenance of soil productivity.

Unit IV

Control of weeds, diseases and insect pest management, biological agents and pheromones, bio-pesticides.

Unit V

Socio-economic impacts; marketing and export potential: inspection, certification, labeling and accreditation procedures; organic farming and national economy.

VI. Practical

- Method of making compost by aerobic method
- Method of making compost by anaerobic method
- Method of making vermicompost
- Identification and nursery raising of important agro-forestry tress and tress for shelter belts
- Efficient use of biofertilizers, technique of treating legume seeds with *Rhizobium* cultures, use of *Azotobacter*, *Azospirillum*, and PSB cultures in field
- Visit to a biogas plant
- Visit to an organic farm
- Quality standards, inspection, certification and labeling and accreditation procedures for farm produce from organic farms

VII. Teaching methods/activities

Classroom teaching with AV aids, group discussion, assignment. exposure visit

VIII. Learning outcome

Basic knowledge on organic farming for sustainable agriculture and development

- Ananthakrishnan TN. (Ed.). 1992. Emerging Trends in Biological Control of Phytophagous Insects, Oxford & IBH.
- Gaur AC. 1982. A Manual of Rural Composting, FAO/UNDP Regional Project Document, FAO.
- Joshi M. 2016. New Vistas of Organic Farming. Scientific Publishers
- Lampin N. 1990. Organic Farming. Press Books, lpswitch, UK.
- Palaniappan SP and Anandurai K. 1999. Organic Farming Theory and Practice. Scientific Publ.
- Rao BV Venkata. 1995. Small Farmer Focused Integrated Rural Development: Socio-economic Environment and Legal Perspective: Publ. 3, Parisaraprajna Parishtana, Bangalore.
- Reddy MV. (Ed.). 1995. Soil Organisms and Litter Decomposition in the Tropics. Oxford & IBH.
- Sharma A. 2002. Hand Book of Organic Farming. Agrobios.
- Singh SP. (Ed.). 1994. Technology for Production of Natural Enemies. PDBC, Bangalore.
- Subba Rao NS. 2002. Soil Microbiology. Oxford & IBH.
- Trivedi RN. 1993. A Text Book of Environmental Sciences, Anmol Publ.
- Veeresh GK, Shivashankar K and Suiglachar MA. 1997. Organic Farming and Sustainable Agriculture. Association for Promotion of Organic Farming, Bangalore.
- WHO. 1990. Public Health Impact of Pesticides Used in Agriculture. WHO.
- Woolmer PL and Swift MJ. 1994. *The Biological Management of Tropical Soil Fertility*. TSBF & Wiley.

I. Course Title : Soil Erosion and Conservation

II. Course Code : AG5EA02 III. Credit Hours : 2+1

IV. Aim of the course

To enable students to understand various types of soil erosion and measures to be taken for controlling soil erosion to conserve soil and water.

V. Theory

Unit I

History, distribution, identification and description of soil erosion problems in India.

Unit II

Forms of soil erosion; effects of soil erosion and factors affecting soilerosion; types and mechanisms of water erosion; raindrops and soil erosion; rainfall erosivity estimation as EI30 index and kinetic energy; factors affectingwater erosion; empirical and quantitative estimation of water erosion; methods of measurement and prediction of runoff; soil losses in relation to soil properties and precipitation.

Unit III

Wind erosion- types, mechanism and factors affecting wind erosion; extent of problem in the country.

Unit IV

Principles of erosion control; erosion control measures – agronomical and engineering; erosion control structures - their design and layout.

Unit V

Soil conservation planning; land capability classification; soil conservation in special problem areas such as hilly, arid and semi-arid regions, waterlogged and wet lands.

Unit VI

Watershed management - concept, objectives and approach; water harvesting and recycling; flood control in watershed management; socioeconomic aspects of watershed management; case studies in respect to monitoring and evaluation of watersheds; use of remote sensing in assessment and planning of watersheds, sediment measurement

VI. Practical

- Determination of different soil erodibility indices suspension percentage, dispersion ratio, erosion ratio, clay ratio, clay/moisture equivalent ratio, percolation ratio, raindrop erodibility index
- Computation of kinetic energy of falling rain drops
- Computation of rainfall erosivity index (EI30) using rain gauge data
- Land capability classification of a watershed
- · Visits to a watersheds

VII. Teaching methods/activities

Classroom teaching with AV aids, group discussion, oral presentation by students.

VIII. Learning outcome

Experience on the knowledge of soil conservation and their utility in research for solving field problem.

IX. Suggested Reading

• Biswas TD and Narayanasamy G. (Eds.) 1996. Soil Management in Relation to Land

- Degradation and Environment. Bull. Indian Society of Soil Science No. 17.
- Doran JW and Jones AJ. 1996. *Methods of Assessing Soil Quality*. Soil Science Society of America, Spl Publ. No. 49, Madison, USA.
- Gurmal Singh, Venkataramanan C, Sastry G and Joshi BP. 1990. Manual of Soil and Water Conservation Practices. Oxford & IBH.
- Hudson N. 1995. Soil Conservation. Iowa State University Press.
- Indian Society of Soil Science 2002. Fundamentals of Soil Science. ISSS, New Delhi.
- Oswal MC. 1994. Soil Physics. Oxford & IBH.

I. Course Title : Soil Biology and Biochemistry

II. Course Code : AG5EA01
III. Credit Hours : 2+1

IV. Aim of the course

To teach students the basics of soil biology and biochemistry, including biogeochemical cycles, plant growth promoting rhizobacteria, microbial interactions in soil and other soil activities.

V. Theory

Unit I

Soilbiota, soil microbialecology, types of organisms indifferent soils; soil microbial biomass; microbial interactions; un-culturable soilbiota.

Unit II

Microbiology and biochemistry of root-soil interface; phyllosphere; soil enzymes, origin, activities and importance; soil characteristics influencing growth and activity of microflora; Root rhizosphere and PGPR.

Unit III

Microbial transformations of nitrogen, phosphorus, sulphur, iron and manganese in soil; biochemical composition and biodegradation of soil organic matter and crop residues, microbiology and biochemistry of decomposition of carbonaceous and protenaceous materials, cycles of important organic nutrients.

Unit IV

organic wastes and their use for production of biogas and manures; biotic factors in soil development; microbial toxins in the soil.

Unit V

Preparation and preservation of farmyard manure, animal manures, rural and urban composts and vermicompost.

Unit VI

Biofertilizers-definition, classification, specifications, method of production and role in crop production; FCO specifications and quality control of biofertilizers.

Unit VII

Biological indicators of soil quality; bioremediation of contaminated soils; microbial transformations of heavy metals in soil; role of soil organisms inpedogenesis – important mechanisms and controlling factors; soil genomics and bioprospecting; soil sickness due to biological agents; Xenobiotics; antibiotic production in soil.

VI. Practical

- Determination of soil microbial population
- Soil microbial biomass carbon
- Elemental composition, fractionation of organic matter and functional groups
- · Decomposition of organic matter in soil
- Soil enzymes
- Measurement of important soil microbial processes such as ammonification, nitrification, N₂ fixation, S oxidation, P solubilization and mineralization of other micronutrients

VII. Teaching methods/ activities

Classroom teaching with AV aids, group discussion, oral presentation by students.

VIII. Learning outcome

Experience on the knowledge of soil microbes and their utility in research for solving field problem.

- Paul EA and Clark FE. Soil Microbiology and Biochemistry.
- Lynch JM. Soil Biotechnology
- Willey JM, Linda M. Sherwood and Woolverton CJ. Prescott's Microbiology.
- Subba Rao NS. Advances In Agricultural Microbiology.

I. Course Title : Soil Survey and Land Use Planning

II. Course Code : AG5EA03 III. Credit Hours : 2+0

IV. Aim of the course

To teach the better utilization of land for agricultural purposes, and better management of run-off or surplus/ excessive rain-water in the catchment area for agricultural purposes in a watershed.

V. Theory

Unit I

Soil survey and its types; soil survey techniques- conventional and modern; soil series-characterization and procedure for establishing soil series; benchmark soils and soil correlations; soil survey interpretations; thematic soil maps, cartography, mapping units, techniques for gene ration of soil maps, application of remote sensing and GIS in soil survey and mapping of major soil group of India

Unit II

Landform-soil relationship; major soil groups of India with special reference to respective states; land capability classification and land irrigability classification; land evaluation and land use type (LUT)-concept and application; approaches for managing soils and landscapes in the framework of agro-ecosystem.

Unit III

Concept and techniques of land use planning; factors governing present land use; Land evaluation method sand soil-site suitability evaluation for different crops; land capability classification and constraints in application.

Unit IV

Agro-ecological regions/sub-regions of India and their characteristics in relation to crop production. Status of LUP in India.

VI. Practical

- · Aerial photo and satellite data interpretation for soil and land use
- Cartographic techniques for preparation of base maps and thematic maps, processing of field sheets, compilation and obstruction of maps in different scales
- Land use planning exercises using conventional and RS tools

VII. Teaching methods/activities

Classroom teaching with AV aids, group discussion, field visit and exposure visit Planning for land use in proper way for higher crop productivity.

- Boul SW, Hole ED, MacCraken RJ and Southard RJ. 1997. Soil Genesis and Classification. 4th Ed. Panima Publ.
- Brewer R. 1976. Fabric and Mineral Analysis of Soils. John Wiley & Sons.

I. Course Title : Statistical Methods for Applied Sciences

II. Course Code : AG5BS01 III. Credit Hours : 3+1

IV. Aim of the course

This course is meant for students who do not have sufficient background of Statistical Methods. The students would be e xposed to concepts of statistical methods and statistical inference that would help them in understanding the importance of statistics. It would also help them in understanding the concepts involved in data presentation, analysis and interpretation. The students would get an e xposure to presentation of data, probability distributions, parameter estimation, tests of significance, regression and multivariate analytical techniques.

V. Theory

Unit I

Box-plot, Descriptive statistics, Exploratory data analysis, Theory of probability, Random variable and mathematical expectation.

Unit II

Discrete and continuous probability distributions, Binomial, Poisson, Negative Binomial, Normal distribution, Beta and Gamma distributions and their applications. Concept of sampling distribution: chi-square, t and F distributions. Tests of significance based on Normal, chi-square, t and F distributions.

Unit III

Introduction to theory of estimation and confidence-intervals, Simple and multiple correlation coefficient, partial correlation, rank correlation, Simple and multiple linear regression model, test of significance of correlation coefficient and regression coefficients, Coefficient of determination, Fitting of quadratic models.

Unit IV

Non-parametric tests – sign, Wilcoxon, Mann-Whitney U-test, Run test for the randomness of a sequence. Median test.

Unit V

Introduction to ANOVA: One way and Two Way, Introduction to Sampling Techniques, Introduction to Multivariate Analysis, Transformation of Data.

VI. Practical

- Exploratory data analysis, fitting of distributions ~ Binomial, Poisson, Negative Binomial, Normal.
- Large sample tests, testing of hypothesis based on exact sampling distributions ~ chi square, t and F.
- Confidence interval estimation and Correlation and regression analysis, fitting of Linear and Quadratic Model.
- Non-parametric tests. ANOVA: One way, Two Way, SRS.

- Goon A.M, Gupta M.K and Dasgupta B. 1977. An Outline of Statistical Theory. Vol. I. The World Press.
- Goon A.M, Gupta M.K. and Dasgupta B. 1983. Fundamentals of Statistics. Vol. I. The World Press.
- Hoel P.G. 1971. Introduction to Mathematical Statistics. John Wiley.
- Hogg R.V and Craig T.T. 1978. Introduction to Mathematical Statistics. Macmillan.
- Morrison D.F. 1976. Multivariate Statistical Methods. McGraw Hill.
- Hogg RV, McKean JW, Craig AT. 2012. Introduction to Mathematical Statistics 7th Edition.

- Siegel S, Johan N & Casellan Jr. 1956. Non-parametric Tests for Behavior Sciences. John Wiley.
- Anderson TW. 2009. An Introduction to Multivariate Statistical Analysis, 3rd Ed. John Wiley

I. Course Title : Experimental Designs

II. Course Code : AG5BS02 III. Credit Hours : 2+1

IV. Aim of the course

This course is meant for students of agricultural and animal sciences other than Agricultural Statistics. Designing an experiment is an integrated component of research in almost all sciences. The students would be exposed to concepts of Design of Experiments so as to enable them to understand the concepts involved in planning, designing their experiments and analysis of experimental data.

V. Theory

Unit I

Need for designing of experiments, characteristics of a good design. Basic principles of designs- randomization, replication and local control.

Unit II

Uniformity trials, size and shape of plots and blocks, Analysis of variance, Completely randomized design, randomized block design and Latin square design.

Unit III

Factorial experiments, (symmetrical as well as asymmetrical). orthogonality and partitioning of degrees of freedom. Concept of confounding.

Unit IV

Split plot and strip plot designs, analysis of covariance and missing plot techniques in randomized block and Latin square designs; Transformations, Balanced Incomplete Block Design, resolvable designs and their applications, Lattice design, alpha design - concepts, randomization procedure, analysis and interpretation of results. Response surfaces. Combined analysis.

VI. Practical

- Uniformity trial data analysis, formation of plots and blocks, Fairfield Smith Law, Analysis of data obtained from CRD, RBD, LSD, Analysis of factorial experiments,
- · Analysis with missing data,
- Split plot and strip plot designs.

- Cochran WG and Cox GM. 1957. Experimental Designs. 2nd Ed. John Wiley.
- Dean AM and Voss D. 1999. Design and Analysis of Experiments. Springer.
- Montgomery DC. 2012. Design and Analysis of Experiments, 8th Ed. John Wiley.
- Federer WT. 1985. Experimental Designs. MacMillan.
- Fisher RA. 1953. Design and Analysis of Experiments. Oliver & Boyd.
- Nigam AK and Gupta VK. 1979. Handbook on Analysis of Agricultural Experiments. IASRI Publ.
- Pearce SC. 1983. The Agricultural Field Experiment: A Statistical Examination of Theory and Practice. John Wiley.
- www.drs.icar.gov.in.

LIBRARY AND INFORMATION SERVICES (0+1)

Course Code:- AG5SE01

Objective

To equip the library users with skills to trace information from libraries efficiently, to apprise them of information and knowledge resources, to carry out literature survey, to formulate information search strategies, and to use modern tools (Internet, OPAC, search engines, etc.) of information search.

Practical

Introduction to library and its services; Role of libraries in education, research and technology transfer; Classification systems and organization of library; Sources of information- Primary Sources, Secondary Sources and Tertiary Sources; Intricacies of abstracting and indexing services (Science Citation Index, Biological Abstracts, Chemical Abstracts, CABI Abstracts, etc.); Tracing information from reference sources; Literature survey; Citation techniques/ Preparation of bibliography; Use of CD-ROM Databases, Online Public Access Catalogue and other computerized library services; Use of Internet including search engines and its resources; e-resources access methods.

TECHNICAL WRITING AND COMMUNICATIONS SKILLS (0+1)

Course Code:- AG5SE02

Objective

To equip the students/ scholars with skills to write dissertations, research papers, etc. To equip the students/ scholars with skills to communicate and articulate in English (verbal as well as writing).

Practical (Technical Writing)

- Various forms of scientific writings- theses, technical papers, reviews, manuals, etc.;
- Various parts of thesis and research communications (title page, authorship contents page, preface, introduction, review of literature, material and methods, experimental results and discussion);
- Writing of abstracts, summaries, précis, citations, etc.;
- · Commonly used abbreviations in the theses and research communications;
- Illustrations, photographs and drawings with suitable captions; pagination, numbering of tables and illustrations;
- Writing of numbers and dates in scientific write-ups;
- Editing and proof-reading;
- Writing of a review article;
- Communication Skills Grammar (Tenses, parts of speech, clauses, punctuation marks);
- Error analysis (Common errors), Concord, Collocation, Phonetic symbols and transcription;
- Accentual pattern: Weak forms in connected speech;
- Participation in group discussion;
- Facing an interview;
- Presentation of scientific papers.

Suggested Readings

- 1. Barnes and Noble. Robert C. (Ed.). 2005. Spoken English: Flourish Your Language.
- 2. Chicago Manual of Style. 14th Ed. 1996. Prentice Hall of India.
- 3. Collins' Cobuild English Dictionary. 1995.
- 4. Harper Collins. Gordon HM and Walter JA. 1970. Technical Writing. 3rd Ed.
- 5. Holt, Rinehart and Winston. Hornby AS. 2000. *Comp. Oxford Advanced Learner's Dictionary of Current English*. 6th Ed. Oxford University Press.
- 6. James HS. 1994. Handbook for Technical Writing. NTC Business Books.
- 7. Joseph G. 2000. *MLA Handbook for Writers of Research Papers*. 5th Ed. Affiliated East-West Press.
- 8. Mohan K. 2005. Speaking English Effectively. MacMillan India.
- 9. Richard WS. 1969. Technical Writing.
- 10. Sethi J and Dhamija PV. 2004. *Course in Phonetics and Spoken English*. 2nd Ed. Prentice Hall of India.
- 11. Wren PC and Martin H. 2006. *High School English Grammar and Composition*. S. Chand & Co.

INTELLECTUAL PROPERTY AND ITS MANAGEMENT IN AGRICULTURE (1+0)

Course Code:- AG5SE04

Objective

The main objective of this course is to equip students and stakeholders with knowledge of Intellectual Property Rights (IPR) related protection systems, their significance and use of IPR as a tool for wealth and value creation in a knowledge - based economy.

Theory

Historical perspectives and need for the introduction of Intellectual Property Right regime; TRIPs and various provisions in TRIPS Agreement; Intellectual Property and Intellectual Property Rights (IPR), benefits of securing IPRs; Indian Legislations for the protection of various types of Intellectual Properties; Fundamentals of patents, copyrights, geographical indications, designs and layout, trade secrets and traditional knowledge, trademarks, protection of plant varieties and farmers' rights and biodiversity protection; Protectable subject matters, protection in biotechnology, protection of other biological materials, ownership and period of protection; National Biodiversity protection initiatives; Convention on Biological Diversity; International Treaty on Plant Genetic Resources for Food and Agriculture; Licensing of technologies, Material transfer agreements, Research collaboration Agreement, License Agreement.

Suggested Readings

- 1. Erbisch FH and Maredia K.1998. *Intellectual Property Rights in Agricultural Biotechnology*. CABI.
- 2. Ganguli P. 2001. Intellectual Property Rights: Unleashing Knowledge Economy. McGraw-Hill.
- 3. Intellectual Property Rights: Key to New Wealth Generation. 2001. NRDC and Aesthetic Technologies.
- 4. Ministry of Agriculture, Government of India. 2004. *State of Indian Farmer*. Vol. V. Technology Generation and IPR Issues. Academic Foundation.
- 5. Rothschild M and Scott N. (Ed.). 2003. *Intellectual Property Rights in Animal Breeding and Genetics*. CABI.
- 6. Saha R. (Ed.). 2006. Intellectual Property Rights in NAM and Other Developing Countries: A Compendium on Law and Policies. Daya Publ. House.

The Indian Acts - Patents Act, 1970 and amendments; Design Act, 2000; Trademarks Act, 1999; The Copyright Act, 1957 and amendments; Layout Design Act, 2000; PPV and FR Act 2001, and Rules 2003; The Biological Diversity Act, 2002.

BASIC CONCEPTS IN LABORATORY TECHNIQUES (0+1)

Course Code:- AG5SE05

Objective

To acquaint the students about the basics of commonly used techniques in laboratory.

Practical

- Safety measures while in Lab;
- Handling of chemical substances;
- Use of burettes, pipettes, measuring cylinders, flasks, separatory funnel, condensers, micropipettes and vaccupets;
- Washing, drying and sterilization of glassware;
- Drying of solvents/ chemicals;
- Weighing and preparation of solutions of different strengths and their dilution;
- · Handling techniques of solutions;
- Preparation of different agro-chemical doses in field and pot applications;
- Preparation of solutions of acids;
- Neutralisation of acid and bases;
- Preparation of buffers of different strengths and pH values;
- Use and handling of microscope, laminar flow, vacuum pumps, viscometer, thermometer, magnetic stirrer, micro-ovens, incubators, sandbath, waterbath, oilbath:
- Electric wiring and earthing;
- Preparation of media and methods of sterilization;
- Seed viability testing, testing of pollen viability;
- Tissue culture of crop plants:
- Description of flowering plants in botanical terms in relation to taxonomy.

Suggested Readings

- 1. Furr AK. 2000. CRC Hand Book of Laboratory Safety. CRC Press.
- 2. Gabb MH and Latchem WE. 1968. *A Handbook of Laboratory Solutions*. Chemical Publ. Co.

AGRICULTURAL RESEARCH, RESEARCH ETHICS AND RURAL DEVELOPMENT PROGRAMMES (1+0)

Course Code:- AG5SE06

Objective

To enlighten the students about the organization and functioning of agricultural research systems at national and international levels, research ethics, and rural development programmes and policies of Government.

Theory

UNIT I History of agriculture in brief; Global agricultural research system: need, scope, opportunities; Role in promoting food security, reducing poverty and protecting the environment; National Agricultural Research Systems (NARS) and Regional Agricultural Research Institutions; Consultative Group on International Agricultural Research (CGIAR): International Agricultural Research Centres (IARC), partnership with NARS, role as a partner in the global agricultural research system, strengthening capacities at national and regional levels; International fellowships for scientific mobility.

UNIT II Research ethics: research integrity, research safety in laboratories, welfare of animals used in research, computer ethics, standards and problems in research ethics.

UNIT III Concept and connotations of rural development, rural development policies and strategies. Rural development programmes: Community Development Programme, Intensive Agricultural District Programme, Special group – Area Specific Programme, Integrated Rural Development Programme (IRDP) Panchayati Raj Institutions, Co- operatives, Voluntary Agencies/ Non- Governmental Organisations. Critical evaluation of rural development policies and programmes. Constraints in implementation of rural policies and programmes.

Suggested Readings

- 1. Bhalla GS and Singh G. 2001. *Indian Agriculture Four Decades of Development*. Sage Publ.
- 2. Punia MS. *Manual on International Research and Research Ethics*. CCS Haryana Agricultural University, Hisar.
- 3. Rao BSV. 2007. Rural Development Strategies and Role of Institutions Issues, Innovations and Initiatives. Mittal Publ.
- 4. Singh K. 1998. Rural Development Principles, Policies and Management. Sage Publ.