Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Odd) Examination Dec-2018 EE3EL08/EX3EL08 Reliability Engineering

Branch/Specialisation: EE/EX Programme: B.Tech.

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Q.1 i. Which among the following exhibits inversely proportional 1 relationship with the reliability?
 - (a) Production cost
 - (b) Design and development cost
 - (c) Maintenance and repair cost
 - (d) All of these
 - What is /are the major purpose/s of using a bath tub curve?
 - (a) To determine the capital maintenance in defense equipments
 - (b) To compute lifts in the distillation column
 - (c) To decide the maintenance of equipment
 - (d) All of these
 - How is the reliability of a product specified?
 - (a) Always less than 1
- (b) Always greater than 1
- (c) Always equal to 1
- (d) None of these
- According to exponential law of reliability, the relationship between the reliability and the system failure due to consistency in occurrence of failure rate, can be generally expressed as _
 - (a) $R = \lambda t$
- (b) $R = -\lambda t$ (c) $R = e^{\lambda t}$ (d) $R = e^{-\lambda t}$
- Which one of the following relationships is incorrect?

 - (a) F(t) = 1 R(t) (b) $R(t) = \exp\left[\int_{0}^{t} \lambda(x)dx\right]$

 - (c) $f(t) = \frac{-dF(t)}{dt}$ (d) $\lambda(t) = \frac{f(t)}{1 F(t)}$

P.T.O.

1

1

1

	V1.	What is the failure cost of a product possessing reliability R=1?			
		(a) Zero (b) Unity (c) Infinity (d) None of these			
	vii.	Which of the following is not considered a reliability design	1		
		method:			
		(a) Monte Carlo (b) Derating			
		(c) Accessibility (d) Use of redundancy			
	viii.	A system composed of two active redundant components each	1		
		having an availability equal to "A" has an availability equal to:			
		(a) A^2 (b) $1-A^2$ (c) $1-(1-A^2)$ (d) $1-(1-A)^2$			
	ix.	Life tables are used to estimate the reliability of:	1		
		(a) Ungrouped complete data (b) Grouped censored data			
		(c) Ungrouped censored data (d) A minimal repair component			
	х.	What would happen, if equipment possesses reliability and	1		
		maintainability to the maximum extent in accordance to MTTR?			
		(a) Failure rate is higher & downtime is longer			
		(b) Failure rate is lower & downtime is longer			
		(c) Failure rate is higher & downtime is shorter			
		(d) Failure rate is lower & downtime is shorter			
Q.2 i. ii.		Define reliability considering adequacy and security.	2		
	iii.	Explain probability distribution function with neat sketch.	3		
OR	iv.	Explain discrete random variables and probability distributions	5		
Q.3	i.	Define reliability based hazard function.	2		
	ii.	Explain failure law in series system with mathematical treatment.	8		
OR	iii.	Explain effect of preventive maintenance on reliability.	8		
0.4			4		
Q.4	1.	Explain cut-set method used in reliability evaluation.	3		
	ii.	A two component series system contains identical components	7		
		each having a reliability of 0.99. Evaluate the unreliability of the			
0.5		system.	_		
OR	iii.	A system consists of four components in parallel. System success	7		
		requires that at least three of these components must function.			
		What is the probability of system success if the component			

reliability is 0.9? What is the system reliability if five components are placed in parallel to perform the same function?

- Q.5 i. Differentiate between discrete and continuous Markov process.
 - ii. Write a short note on frequency balance approach.
- OR iii. What do you mean by failure frequency? Hence calculate system average interruption frequency index for the following.

Duration (min)	Number of customers	Interruption type
20	200	Sustained
1	400	Momentary
513.5	700	Sustained

- Q.6 Attempt any two:
 - i. What is the mean time to failure (MTTF) for the transmission 5 system?
 - ii. Find mean time to failure (MTTF) for system which is composed 5 of three elements. Component 1 is in series with the parallel redundant combination of components 2 and 3, which are identical.

$$\lambda_1 = 1 \text{ f/yr},$$
 $\lambda_2 = \lambda_3 = 3 \text{ f/yr}$
 $\mu_1 = 98 \text{ r/yr},$ $\mu_2 = \mu_3 = 50 \text{ r/yr}$

iii. Explain parametric estimation using least square estimates.

5

Marking Scheme EE3EL08/EX3EL08 Reliability Engineering

Q.1	i.	Which among the following exhibits inversely relationship with the reliability? (d) All of these	ly proportional	1		
	ii.	What is /are the major purpose/s of using a bath tub curve?				
		(c) To decide the maintenance of equipment				
	iii.	How is the reliability of a product specified?				
		(a) Always less than 1				
	iv. According to exponential law of reliability, the relationsh					
		between the reliability and the system failure due to consistency in				
		occurrence of failure rate, can be generally expressed as				
		(d) $R = e^{-\lambda t}$. 0	1		
	v.					
		(c) $f(t) = \frac{-dF(t)}{dt}$				
				_		
	vi.	What is the failure cost of a product possessing reliability R=1?				
		(a) Zero		1		
	vii. Which of the following is not considered a reliability design					
		method:				
		(a) Monte Carlo	, 1	1		
	viii.	• 1				
		having an availability equal to "A" has an availability equal to:				
		(d) $1-(1-A)^2$		1		
	ix.	Life tables are used to estimate the reliability of:				
		(b) Grouped censored data	11 1 111 11	1		
	x. What would happen, if equipment possesses reliability and					
		maintainability to the maximum extent in accordan	ce to MTTR?			
		(d) Failure rate is lower & downtime is shorter				
Ω	:	Daliakility	1 mark	2		
Q.2	i.	Reliability	1 mark	2		
	::	Any three reliability indicas with it's formula	1 mark	2		
	ii.	Any three reliability indices with it's formula	(1 monte *2)	3		
	:::	1 mark for each	(1 mark *3)	_		
	iii.	Probability distribution function	3 marks	5		
OD	:	Sketch	2 marks	_		
OR	iv.	Discrete random variables	2marks	5		

		Probability distributions	3 marks			
Q.3	i.	Reliability based hazard function	1 mark	2		
		Sketch	1 mark			
	ii.	Failure law in series system	4 marks	8		
		Mathematical treatment.	4 marks			
OR	iii.	Effect of preventive maintenance on reliability.	4 marks	8		
		Derivation	4 marks			
Q.4	i.	Cut-set method definition	1 mark	3		
		Method	2 marks			
	ii.	Reliability calculation	4 marks	7		
		Unreliability calculation	3 marks			
OR	iii.	Partially redundant system	4 marks	7		
		Fully redundant system	3 marks			
Q.5	i.	Discrete Markov process	2 marks	4		
		Continuous Markov process.	2 marks			
	ii.	Frequency balance approach.	3 marks	6		
		Illustration/Example	3 marks			
OR	iii.	Failure frequency	5 marks	6		
		System average interruption frequency index Calculation				
			1 mark			
Q.6		Attempt any two:				
	i.	MTTF for the transmission system		5		
	ii.	State transition diagram	2 marks	5		
		MTTF calculation	3 marks			
	iii.	Least square estimates.	3 marks	5		
		Example	2 marks			
