Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Science End Sem (Odd) Examination Dec-2018

CA3CO02 Digital Electronics

Programme: BCA Branch/Specialisation: Computer

Application

1

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Q.1 i. Simplified expression of full subtractor borrow is
 - (a) B=xy+xz+yz
- (b) B=xy'+xz'+yz
- (c) B=x'y+xy+xz
- (d) B=x'y+x'z+yz
- ii. Binary parallel adder can be used as both adder and subtraction 1 circuit using which of the following gate.
 - (a) AND gate (b) OR gate (c) XOR gate (d) NOT gate
- iii. The output of an AND gate with three inputs, A, B, and C, is 1 HIGH when
 - (a) A = 1, B = 1, C = 0
- (b) A = 0, B = 0, C = 0
- (c) A = 1, B = 1, C = 1
- (d) A = 1, B = 0, C = 1
- iv. If a 3-input NOR gate has eight input possibilities, how many of those possibilities will result in a HIGH output?
 - (a) 1
- (b) 2
- (c) 7
- (d) 8
- v. Which statement BEST describes the operation of a negative- 1 edge-triggered D flip-flop?
 - (a) The logic level at the D input is transferred to Q on NGT of CLK.
 - (b) The Q output is ALWAYS identical to the CLK input if the D input is HIGH.
 - (c) The Q output is ALWAYS identical to the D input when CLK = PGT.
 - (d) The Q output is ALWAYS identical to the D input.

P.T.O.

	V1.	How many flip-flops are in the 7475 IC?				
		(a) 1 (b) 2 (c) 4 (d) 8				
	vii.	The terminal count of a modulus-11 binary counter is				
		(a) 1010 (b) 1000				
		(c) 1001 register (d) 1100				
	viii.	Synchronous construction reduces the delay time of a counter to	1			
		the delay of:				
		(a) All flip-flops and gates				
		(b) All flip-flops and gates after a 3 count				
		(c) A single gate				
		(d) A single flip-flop and a gate				
	ix.	Component most likely used for computer static RAM technology				
		is				
		(a) Primary memory (b) Secondary storage				
		(c) Cache memory (d) CPU registers				
	х.	Computer memory which allows simultaneous read and write	1			
		operations is				
		(a) ROM (b) RAM (c) EPROM (d) EEPROM				
0.2		II I NOT LOD ('ALAL LA CNAND	4			
Q.2	i.	How can we design NOT and OR gate with the help of NAND				
	••	gate? Explain with the help of diagram.				
ΩD	ii.	Write and prove De-Morgan theorem. Simplify the following Boolean function using K-map.				
OR	iii.	Simplify the following Boolean function using K-map.				
		$F(A,B,C) = \sum m(0,1,4,5) = A'B'C' + A'B'C + AB'C' + AB'C$				
Q.3	i.	Convert the binary code 01001 into its equivalent grey code.	2			
Q.J	ii.	What is Excess-3 Code? Give examples. Show how it is useful for				
	11.	BCD addition.	0			
OR	iii.	Convert following:	8			
OK	111.	(a) $(231)_8 \longrightarrow ()_{16}$ (b) $(11.85)_{10} \longrightarrow ()_8$	U			
		(a) $(257)_8$ (b) $(11.05)_{10}$ (c) $(7DE)_{16}$ (d) $(17.75)_8$ (e) $(17.75)_8$				
		(c) (122)10 P ()10 (d) (11.13)8 ()2				
Q.4	i.	What is meant by D-flip flop? Explain.	3			
C	ii.	Design a SR flip flop using NAND gate.				
			7			

OR	iii.	Write a short note on: -	7
		(a) Adder/subtractor (b) Encoder /decoder	
Q.5	i.	Explain shift register with its types.	4
	ii.	Design a 3 bit asynchronous up counter.	6
OR	iii.	Explain D/A Converters and A/D Converters.	6
Q.6		Attempt any two:	
	i.	Explain Secondary Memory with Its Types.	5
	ii.	What is ROM? Difference between EPROM & EEPROM.	5
	iii.	Write various types of RAM and explain them in brief.	5

Marking Scheme CA3CO02 Digital Electronics

		_			
Q.1	i.	Simplified expression of full subtractor borrow is		1	
		(d) $B=x'y+x'z+yz$			
	ii.	Binary parallel adder can be used as both adder	and subtraction	1	
		circuit using which of the following gate.			
		(c) XOR gate			
	iii.	The output of an AND gate with three inputs, A, B,	and C, is HIGH	1	
		when			
		(c) $A = 1, B = 1, C = 1$			
	iv.	If a 3-input NOR gate has eight input possibilities	s, how many of	1	
		those possibilities will result in a HIGH output?	·		
		(a) 1			
	v.	Which statement BEST describes the operation of a	negative-edge-	1	
		triggered D flip-flop?			
		(a) The logic level at the D input is transferred to	o Q on NGT of		
		CLK.			
	vi.	How many flip-flops are in the 7475 IC?		1	
		(c) 4			
	vii.	The terminal count of a modulus-11 binary counter is			
		(a) 1010		1	
	viii.	J J			
		delay of:			
		(d) A single flip-flop and a gate			
	ix. Component most likely used for computer static RAM technology				
		is			
		(c) Cache memory			
	х.	Computer memory which allows simultaneous	read and write	1	
		operations is			
		(b) RAM			
Q.2	i.	Design NOT gate with the help of NAND gate	2 marks	4	
		Design OR gate with the help of NAND gate	2 marks		
	ii.	De-Morgan theorem diagram	2 marks	6	
		Description	4 marks		
OR	iii.	Boolean function using K-map.	2 marks	6	

		1		
Q.3	i.	Convert the binary code 01001 into its	equivalent grey code.	2
	ii.	Excess-3 Code	2.5 marks	8
		Example of Excess-3 Code	2.5 marks	
		Excess-3 Code useful for BCD addition	a 3 marks	
OR	iii.	Convert following: Each conversion 2 m	narks (2 marks *4)	8
		(a) $(231)_8 \longrightarrow ()_{16}$ (b) (11.85)	$5)_{10} \longrightarrow ()_8$	
		(c) $(7DE)_{16} \longrightarrow ()_{10}$ (d) $(17.75)_{10}$	5)8 - ()2	
Q.4	i.	Description of D-flip flop	2 marks	3
		Diagram	1 mark	
	ii.	Description of SR flip flop	2 marks	7
		Truth table of NAND gate	2 marks	
		Diagram of SR flip flop	3 marks	
OR	iii.	Write a short note on: -		7
		(a) Adder/subtractor	3.5 marks	
		(b) Encoder /decoder	3.5 marks	
Q.5	i.	Shift register	2 marks	4
		Its types	2 marks	
	ii.	3 bit asynchronous up counter descripti	on 3 marks	6
		Diagram	3 marks	
OR	iii.	D/A Converters description	3 marks	6
		A/D Converters description	3 marks	
Q.6		Attempt any two:		
	i.	Secondary Memory description	2 marks	5
		Its Types	3 marks	
	ii.	ROM description	2 marks	5
		Difference b/w EPROM & EEPROM		
		Any three points 1 mark each	3 marks	
	iii.	Ram description	2 marks	5
		Types of RAM	3 marks	

4 marks

Simplification of expression